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Abstract:  In this note, we establish the strong convergence for the Ishikawa iterative scheme associated 
with Lipschitzian  pseudocontractive mappings in Hilbert spaces. The remark at the end is important.  
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Main Results 
In 1974, Ishikawa [1] introduced an iteration scheme which, 
in some sense, is more general than that of Mann [2] and 
proved the following results. 
Theorem 1 If K  is a compact convex subset of a Hilbert 
space H , KKT a:  is a Lipschitzian pseudocontractive 
mapping and 1x  is any point in K , then the sequence 

1}{ ≥nnx  converges strongly to a fixed point of T , where nx  
is defined iteratively for each positive integer 1≥n  by  
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However we restate the above theorem as follows. 
Theorem 2 If K  is a compact convex subset of a Hilbert 
space H , KKT a:  is a Lipschitzian pseudocontractive 
mapping satisfying 

,,forall KyxTyTxTyx ∈−≤−  (C) 
 and 1x  is any point in K , then the sequence 1}{ ≥nnx  
converges strongly to a fixed point of T , where nx  is 
defined iteratively for each positive integer 1≥n  by  
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 and 11 }{,}{ ≥≥ nnnn βα  are sequences of positive numbers 
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As a particular case, we may choose for instance 

.1=,
1

=
nn

n
nn βα

+
 

Proof. Let p  denote any point of )(TF . Following the 
lines of Ishikawa [1], by using condition (C) we have 
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2
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( ) 22 21 nnnnnn Txxpx −−−−≤ ββα  

222
nnnnnnn TyxTyTx −+−+ αβα  

( ) 22 21 nnnnnn Txxpx −−−−≤ ββα  

( ) 2
nnnnn TyTx −++ βαα  
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 Also since T  is Lipschitzian, 
,nnnnn TxxLTyTx −≤− β  

and (1) implies 
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Now by (ii), 0=lim nn
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such that for all ,0nn ≥   
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The rest of the argument follows exactly as in the proof of 
the main Theorem of [1].  
Remark 1 This kind of reconstruction is new under the 
setting of Hilbert spaces.  
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