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Abstract: In this note, we establish the strong convergence for the Ishikawa iterative scheme associated
with Lipschitzian pseudocontractive mappings in Hilbert spaces. The remark at the end is important.
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Main Results

In 1974, Ishikawa [1] introduced an iteration scheme which,
in some sense, is more general than that of Mann [2] and
proved the following results.

Theorem 1 If K is a compact convex subset of a Hilbert
space H, T : K — K is a Lipschitzian pseudocontractive
mapping and X, is any point in K, then the sequence
{X, },51 converges strongly to a fixed point of T , where X,
is defined iteratively for each positive integer N >1 by

Xp = Q=a,))X, +a,TY,,

Yo = (1= 58.)X, + B, TX,,
and {a,},51,. {8 }.o1 are sequences of positive numbers

satisfying the conditions
()0<ea, <p, <L (i)limpB, =0;

nN—o0

(iii)> e, B, = .

n>1
However we restate the above theorem as follows.
Theorem 2 If K is a compact convex subset of a Hilbert
space H, T : K+ K is a Lipschitzian pseudocontractive
mapping satisfying
[x—=Ty| <[Tx - Ty[forallx, y e K, (©)
and X, is any point in K, then the sequence {X }..,
converges strongly to a fixed point of T, where X is
defined iteratively for each positive integer n >1 by

Xoi = (1—a,)X, + o, Ty,

Y, = (1= 8,)X, + B, TX,,

and {&, }1, {8, }.1 are sequences of positive numbers
satisfying the conditions

)Y 1,5, = o0, (i) lim f3, = 0,

As a particular case, we may choose for instance
n 1

ty=—— f ==
n+1 n

Proof. Let p denote any point of F(T). Following the
lines of Ishikawa [1], by using condition (C) we have

R e Y

@28, fx, x|’

+a BT, =Ty, — (B, —a, %, ~ Ty,
<[, = B ~ e, (0= 28, Jr, =T, [

@

+a, BT, =Ty, + 2%, - Ty,
<[, = P — e B@-28, )%, ~Tx,[’
+ay (e + 4, T, =Ty,

<[, = p|* — e 8,028, )%, ~Tx,|’
+2a,[Tx, —Tyn||2

Also since T is Lipschitzian,

7% =TYa < LA, [, =T, |
and (1) implies

%1 =PI <%, = |~ @8,

(L-2(2+ 2B, Jx, - Tx |-

Now by (ii), lim £, =0 implies that there exists N, € N
such that for dll’n = n,,

R
n 4‘1+L2i

and also (2) yields
1
[0 = B <l = I =SBl =T,
implies
1
Sl =T <%, = Bl ==l

so that

1 n

Ezajﬂj ij _TX1H2 <[xw = I =% =PI
j=m

The rest of the argument follows exactly as in the proof of

the main Theorem of [1].

Remark 1 This kind of reconstruction is new under the

setting of Hilbert spaces.
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